University of California, Santa Barbara

Department of Electrical and Computer Engineering
ECE 152A - Digital Design Principles
Midterm Exam \#2 - Solution
August 5, 2009

Name \qquad
Perm \# \qquad
Lab Section \qquad

Problem \#1 (35 points) \qquad
Problem \#2 (35 points) \qquad
Problem \#3 (30 points) \qquad
Total (100 points) \qquad

- This is a 75 minute exam; closed book, closed notes, no calculators.
- Answer all questions on the exam.

Problem \#1.

a) (26 points) For the edge-triggered D Flip-Flop shown below, complete the timing diagram on the following page. The actual propagation delays are not important, but use arrows to indicate the causality and order of transitions.

Assume the following initial conditions:
CLK = 0
D = 1
DBAR $=0$
DBARBAR $=0$
R = 1
$S=0$
$Q=0$
QBAR = 1

Midterm Exam \#2 Solution - Page 3 of 18

b) (3 points) Assuming that $\mathrm{t}_{P H L}=\mathrm{t}_{P L H}=10 \mathrm{~ns}$ for both the 2 and 3 input NOR gates, what is the worst case CLK to Q propagation delay?

$$
\begin{aligned}
& \text { FROM TIMING DIAGRAM } \\
& \begin{aligned}
C L K & \rightarrow S \rightarrow Q B A R \rightarrow Q \\
& =30 n S
\end{aligned} \\
& \begin{aligned}
C L K & \rightarrow R
\end{aligned} \\
& \\
& \\
& =30 n S \\
& \therefore
\end{aligned}
$$

c) (3 points) If fundamental mode operation is assumed (and guaranteed) and the propagation delays are as specified in part b) above, what is the set up time for this flip flop?

$$
\begin{aligned}
& \text { AFTER CHANGE IN } X \text { INPUT, ALL } \\
& \text { NODES MUST BE } T \text { TABLE BEFORE } \\
& \text { ASSERTION OF CLOCK } \\
& D \rightarrow \text { DBAR } \rightarrow D \text { BARBAR } \\
& =20 n S \\
& \therefore L_{S U}=2 U_{n} S
\end{aligned}
$$

d) (3 points) If this flip flop is used in a digital system in conjunction with a combinational logic block having a critical path delay of 50ns, what is the minimum clock period for this system?

MIN Cluck TEND

$$
\begin{aligned}
& =C L K \rightarrow Q+\underset{\substack{\text { COMBO } \\
D E L A Y}}{ }+t_{S Y} \\
& =30 n s+5 O_{n} S+20 n s=100 n s
\end{aligned}
$$

Problem \#2.

In this problem you are asked to design a 2-bit up/down binary counter. The counter has a single input R (Reverse). When R is 0 , the counter continues counting in the current direction (up or down) on each clock edge. When R is 1 , the direction is reversed i.e., if the counter had been counting up, it now counts down, if the counter had been counting down, it now begins counting up. Note that R doesn't specify the direction, it reverses the current direction.

The design may require more than two state variables, but the count must be represented by the two least significant state variables which must be labeled A and B (where B is the least significant bit).

When counting up: $\quad \mathrm{AB}=00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \ldots$
When counting down: $\quad A B=11 \rightarrow 10 \rightarrow 01 \rightarrow 00 \rightarrow 11 \ldots$
The count should change on every clock edge whether reversing direction or not.
a) (5 points) Construct a state diagram for your design. Clearly indicate the definition of each state variable in your design.

Midterm Exam \#2 Solution - Page 7 of 18
b) (10 points) Construct a state table for your design.

c) (5 points) Construct next state maps for each of the state variables in your design.

A^{+}

B^{+}
d) (5 points) Marketing has determined that if 74109 "J - not K" flip flops are used, profit margins will be maximized. The pin assignments and function table for the device are given below.

Construct the excitation table for the " J - not K" flip flop.

54/74 FAMILIES OF COMPATIBLE TTL CIRCUITS

See explanation of function tables on page 3-8.
"This configuration is nonstable; that is, it will not persist when presot and elear inputs return to thair inactive (high) leval,

Q	Q^{+}	V	\bar{K}
0	0	0	X
0	1	1	x
1	0	x	0
1	1	x	1

e) (10 points) Based on the excitation table derived in part d) above, determine the flip flop inputs for each of the state variables. You can assume that the preset and clear inputs are always tied to a logical 1.

$V_{A}=\bar{R} \bar{D} B+\bar{R} D \bar{B}+R D B+R \bar{D} \bar{B}$

$$
=R \oplus D \oplus B
$$

$$
\begin{aligned}
\bar{K}_{A} & =\bar{R} \bar{D} \bar{B}+\bar{R} D B+R D \bar{B}+\overline{R D B} \\
& =(R \oplus D \oplus B)^{\prime}
\end{aligned}
$$

$V_{B}=1$

$\bar{K}_{B_{2}}=0$

Problem \#3.

On this and the following two pages are the functional block diagram, data sheet and timing diagram, respectively, for the SN74194 4-Bit Bidirectional Universal Shift Register.

The Function Table on the data sheet on the following page provides all the information necessary to complete this design, but l've included all three pages from "The TTL Data Book for Design Engineers" so that there will be no ambiguity as to how this device operates.

On the final pages of this exam, give the Verilog code that, when synthesized, will implement the SN74194 on an FPGA. Use the signal names given in the module declaration in your design.

The syntax of your design will be checked very carefully to determine if it meets the specification.

TYPES SN54194, SN54LS194A, SN54S194, SN74194, SN74LS194A, SN74S194 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS

- Parallel Inputs and Outputs
- Four Operating Modes:

Synchronous Parallel Load Right Shift
Left Shift
Do Nothing

- Positive Edge-Triggered Clocking
- Direct Overriding Clear

	TYPICAL MAXIMUM	TYPICAL TYPE
	CLOCK FREQUENCY	DISSIPATION
'194	36 MHz	195 mW
'LS194A	36 MHz	75 mW
'S194	105 MHz	425 mW

description

SN54194, SN54LS194A, SN54S194 . . . J OR W PACKAGE SN74194, SN74LS194A, SN74S194 . . . J OR N PACKAGE (TOP VIEW)

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

> Parallel (broadside) load
> Shift right (in the direction Q_{A} toward Q_{D})
> Shift left (in the direction Q_{D} toward Q_{A}) Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear at the outputs after the positive transistion of the clock input. During loading, serial data flow is inhibited.
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shitt-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls of the SN54194/SN74194 should be changed only while the clock input is high.

INPUTS										OUTPUTS				$\mathrm{H}=$ high level (steady state) $\mathrm{L}=$ Iow level (steady state)	
CLEAR	MODE		CLOCK	SERIAL		PARALLEL				$\mathbf{a}_{\mathbf{A}}$	a_{B}	${ }^{0}$	0_{D}		
	S1	S0		LEFT	RIGHT	A	B	C	0					$\mathrm{X}=$ irrelevant (any input, including transitions) $\dagger=$ transition fram low to high level	
L	x	x	X	X	X	X	X	X	\times	L	L	L	L		
H	X	X	L	x	x	x	X	x	X	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	$\mathrm{a}_{\text {co }}$	$\mathrm{a}_{\text {DO }}$, b, c, d = the level of steady-state input at
H	H	H	\uparrow.	x	X	a	b	c	d	a	b	c	d		inputs A, B, C, or D, respectively.
H	L	H	\uparrow	x	H	X	x	x	x	H	$\mathrm{Q}_{\text {An }}$	$\mathrm{O}_{8 \mathrm{n}}$	Q_{Cn}		$\mathrm{a}_{A O}, \mathrm{a}_{B O}, \mathrm{a}_{\mathrm{CO}}, \mathrm{a}_{\mathrm{DO}}=$ the level of a_{A}. $\mathrm{a}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, or Q_{D}, respectively, before the
H	L.	H	\uparrow	x	L	x	x	x	x	L	$Q_{\text {An }}$	$\mathrm{O}_{8 n}$	$a_{C n}$		indicated stiady-state input conditions
H	H	L	\uparrow	H	x	x	x	x	X	O_{Br}	O_{Cn}	O_{Dn}	H		were established.
H	H	L	\dagger	L	x	X	x	x	\times	a_{Bn}	a_{Cn}	O_{Dn}	L		$\mathrm{a}_{\mathrm{An}}, \mathrm{a}_{\mathrm{Bn}}, \mathrm{a}_{\mathrm{Cn}}, \mathrm{a}_{\mathrm{Dn}}=$ the level of a_{A}. $\mathrm{a}_{\mathrm{B}}, \mathrm{a}_{\mathrm{C}}$, respectively, before the most-
H	L	L	X	x	X	X	X	\times	\times	$\mathrm{Q}_{\text {AO }}$	a_{80}	Q_{CO}	$\mathrm{Q}_{\text {DO }}$		recent \uparrow transition of the clock.

TYPES SN54194, SN54LS194A, SN54S194,
SN74194, SN74LS194A, SN74S194
4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTERS
typical clear, load, right-shift, left-shift, inhibit, and clear sequences

// module SN74194 (QA, QB, QC, QD, CLR, S1, S0, CLK, L, R, A, B, C, D);
// (6 points for structure and "always" syntax; 6 points per operation)

```
module SN74194 (QA, QB, QC, QD, CLR, S1, S0, CLK, L, R, A, B, C, D);
output QA, QB, QC, QD;
input CLR, S1, S0, CLK, L, R, A, B, C, D;
reg QA, QB, QC, QD;
always @ (posedge CLK or negedge CLR) // this must be negedge CLR,
    // not just CLR...
if (!CLR) // CLR is the highest priority, so it must
begin // be tested first...it overrides the values
    QA <= 0; // of S1 and S0
    QB <= 0;
    QC <= 0;
    QD <= 0;
end
else if (S1 && S0)
begin
    QA <= A; // S1 == S0 == 1
    QB <= B; // is the parallel load
    QC <= C; // operation
    QD <= D;
end
else if (!S1 && SO) // shift right (toward QD)
begin
    QA <= R;
    QB <= QA; // if blocking assignments are used
    QC <= QB; // the order must be reversed, otherwise
    QD <= QC; // R would be loaded into all registers
end
else if (S1 && !SO) // shift left (toward QA)
begin
    QA <= QB; // this order would actually
    QB <= QC; // work for either blocking
    QC <= QD; // of non-blocking assignments
    QD <= L;
end
```

```
// you could include a test for S1 == S0 == 0
// or a default else, but since the action is
// to do nothing, it's not necessary
```

endmodule
// endmodule

